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ABSTRACT
CT-Scanner devices produce three-dimensional images of the
internal structure of the body. In this paper, we propose a
method that is based on the analysis of sensor noise to identify
the CT-Scanner device. For each CT-scanner we built a refer-
ence pattern noise and a correlation map from its slices. Fi-
nally, we can correlate any test slice with the reference pattern
noise of each device according to its correlation map. This
correlation map gives a weighting for each pixel regarding its
position in the reference pattern noise. We used a wavelet-
based Wiener filter and an edge detection method to extract
the noise from a slice. Experiments were applied on three
CT-Scanners with 40 3D images, including 3600 slices, and
we demonstrate that we are able to identify each CT-Scanner
separately.

Index Terms— Digital forensics, medical image foren-
sics, authentication, device identification, noise pattern, sen-
sor noise, denoise filtering, edge detection, wavelet transfor-
mation.

1. INTRODUCTION

Medical imaging is considered an important part of the medi-
cal world, this refers to the process and technique used to ob-
tain an internal visualization of the human body. Computed
tomography [1] or what is called CT-Scanners provide high
quality images. These images are produced by integrating
a series of X-ray views from many different angles to build
cross-sectional images. Unlike other imaging techniques, CT-
Scanners provide detailed images of many types of tissue, in-
cluding bone, lung tissue, soft tissue and blood vessels. It
is used to build an internal representation of almost all body
parts.

Medical images are stored in general as DICOM files [2].
A DICOM file is consisted of two parts, meta-data and the
image content. Meta-data is a readable file, it contains all the
information about the acquisition device, the acquisition sys-
tem and the image parameters. Meta-data files may be modi-
fied, become corrupted or even lost. Consequently, it is very
important to be able to retrieve as much information as possi-
ble from the image part only. In particular, in the absence of
meta-data, or if they are not authenticated, we would like to
identify the CT-Scanner device from raw images and this is
exactly the objective of image forensics [3]. Image forensics

is an important research area, its basic concern is to authenti-
cate the images by retrieving information about their source in
case of unauthenticated device or image modification. These
techniques are based on the images themselves without any
prior information [4].

When we talk about image forensics, two basic prob-
lems are raised: forgery tracing and device identification. In
forgery tracing, much work already exists on digital photog-
raphy [5], but on the medical side, very few research has
been conducted. In [6] the authors present research about
the digital blind forensics, they propose a method for detect-
ing the forged images. Regarding the device identification,
in [7–9] the authors propose a method for digital camera
identification, it is based on the sensor noise analysis, they
present a denoising method and build a Reference Pattern
Noise, this RPN has served as a unique fingerprint for each
camera, this work was carried out on the digital images. But
in the medical domain, very few works exist. In [10], the
authors compared the noise characteristics between two CT-
Scanners from different manufacturers, then they linked the
reconstruction core between two devices from Siemens and
General Electric. In [11], the authors proposed a method for
device identification, but only for the primitive 2D images of
X-ray radiography.

Looking in greater detail at CT-Scanner identification, we
proposed in [12] a first analysis of this problem. We used a
wavelet-based denoising algorithm based on the method pro-
posed in [7] to extract the noise in CT slices. But we had some
difficulties, as current CT images contain many anatomical
structures which are contrasted with relation to each other and
especially with relation to the background. This creates many
edges and is not easy to distinguish these high frequency fea-
tures from the ones created by the noise. In this paper, we
improve the denoising algorithm by including a correlation
map as suggested in [13] which takes into account the reli-
ability of the noise computation from a given pixel of a CT
slice. We include a mask that eliminates the edges and traces
those are left with the noise in the high frequency range, we
built a reference pattern noise for each device. A correlation
map was also built for each device for better correlation com-
putation. Then we are able to identify the CT-Scanner based
on the correlation between the tested slices and the reference
pattern noise, the correlation was basically completed using
the correlation map, this correlation map decides the impor-
tance of the pixel position, it gives a weighting factor as a
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percentage for each pixel, this percentage was computed us-
ing the pixel position being used as an edge or not.

In Section 2, we describe our new version of the CT-
Scanner identification method and we focus on the improve-
ment of the denoising algorithm by using the correlation map.
In Section 3, we present some experimental results in addition
to some further discussions. In Section 4, we discuss some
ideas for future research.

2. THE PROPOSED METHOD

For each device we built a reference pattern noise and a cor-
relation map. To identify a specific CT-Scanner as the acqui-
sition device of a tested slice, we compute the correlation be-
tween the noise component of this slice and the reference pat-
tern noise of this device, this correlation is computed depend-
ing on the correlation map. The correlation value between the
noise component of this tested slice and the reference pattern
noise of the acquisition device should always be the highest.
Fig.1 illustrates the method overview.

Fig. 1. Method overview 1.

In this section, we will present our proposed denoising
method which is used to extract the noise component of each
studied slice, how we can build both the reference pattern
noise and the correlation map and finally, how do we com-
pute the correlation between noise component of the tested
slice and the reference pattern noise depending on the corre-
lation map in order to decide the acquisition device.

2.1. Denoising algorithm

In the frequency domain, we applied a Wiener filter based
wavelet transformation [14–16]. Basically, this algorithm is
composed of two parts. First; local variance estimation of the
wavelet components. Second; denoising of these components
using Wiener filter (see a tutorial in [17]) as follows:
• Calculate four levels of wavelet decomposition of the

original slice. In each level, take out the three high fre-

quency sub-bands: horizontal, vertical and diagonal. For
four levels of wavelet decomposition with three sub-bands
in each level we have 12 sub-bands for each processed
slice.

• For each wavelet sub-band, estimate the local variance.
Four variances values are computed regarding four sizes
of pixel area {3 5, 7, 9}, then the smallest one is the final
estimated variance.

• Denoise each wavelet sub-band using Wiener filter:

Xden(i, j) = X(i, j)
σ̂2(i, j)

σ̂2(i, j) + σ2
0

, (1)

whereX is the wavelet sub-band, σ̂2(i, j) is the estimated
variance of each pixel, σ0 is an initial integer constant
value that we tuned manually, σ0 ∈ [1, 6].

• Apply inverse wavelet transformation on the denoised
wavelet sub-bands to extract the denoised component
F (s) of the original slice s.

2.2. Noise extraction and correction

Our basic concern is about noise, in order to extract the noise
component, we subtract the denoised slice from the original
one.

n(i) = s(i) − F (s(i)), (2)

where n is the noise component, s is the slice, F () is the
denoising function and i is the slice number.

As a result of the subtraction operation we get the noise
component, but in addition to the noise, there exist other
traces or edges that remain in the noise slice. To deal with
these kinds of traces, we apply a noise correction step. We
apply an edge detection on the original image in order to build
a mask of the edges that existed in the slice [18] as follow:
• Apply a blurring filter to remove the noise.

• Compute the gradient of each pixel.

• Compute the norm of the gradient for each pixel and cre-
ate an image of the values.

• Finally, threshold the norm image to extract the maximum
local values that represents the edge mask.

Finally, we applied this edge mask on the previous noise com-
ponent computed from equation 2, the result of the masked
slice represents the pure noise component, this component
does not contain any traces or edges as illustrated in Fig.2
.

In Fig.2, an example of a slice from a 3D image of phan-
tom that were acquired by a Siemens device, where (a) is the
original slice, (b) contains noise in addition to some traces
and (c) contains noise only without any trace or edge.

2.3. CT-Scanner reference pattern and correlation map

To build the reference pattern noise, we selected a set of slices
regarding the CT-Scanner device, we denoised these slices.
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(a) (b) (c)

Fig. 2. (a) Example of a slice from CT-Scanner from Siemens,
(b) Its noise component, (c) Its noise component without
edges.

Then, we calculated the average of slices of the pure noise
component, the average result represents the reference pattern
noise RPN or what is called the device fingerprint:

RPN =
1

N

N∑
i=1

n(i), (3)

where RPN is the reference pattern noise, N is the number
of noise slices and n is the noise component.

We are dealing with 3D volumes consisting of multiple
slices, we applied an average operation according to ’z’ axis
to extract the 2D reference pattern noise. In some slices, we
remove the traces that remain in the noise component, so ac-
cording to the pixel position, in some slices, this pixel may
have served as an edge and it has been removed. Conse-
quently, this pixel position loses some information regarding
the ’Z’ directional axis, while another pixel position did not
lose any information since it has not served as an edge. We
built what we called a correlation map as suggested in [13].
The correlation map gives information about the importance
of each pixel position.

Regarding the selected slices of the reference pattern
noise, we built the correlation map, where the pixel value
represent its frequency as an edge in these slices:

map(i, j) =
∑

I∈RPNslices

maskI(i, j) (4)

where map is the edge frequencies and maskI is the edge
mask of I .

To convert the values of correlation map into percentage
values, we inverted the map values and divided each pixel
value by the maximum one, so each pixel value represents
its importance regarding its frequency as an edge. The pixel
with the highest edge frequency has a low importance and so
it takes the value of 0, while the pixel with the lowest edge
frequency has a high importance and it takes the value 1:

corr map(i, j) =
Inv(map(i, j))

max(map)
, (5)

where corr map is the final correlation map, Inv is the in-
version factor and max is the maximum value of map.

2.4. Decision by correlation

Looking at each device, we have a reference pattern noise and
a correlation map. In order to test new slices to know from
which device they were acquired, we compute the correlation
between the reference pattern noise of each device and the
noise component of each slice depending on the weighting
factor of the correlation map. The tested slice is identified
as acquired from a specific device when it has the highest
correlation value with its reference pattern noise:

R̃PN(i, j) = RPN(i, j)×map(i, j), (6)

where RPN is the reference pattern noise and map is the
correlation map.

ñ(i, j) = n(i, j)×map(i, j), (7)

where n is the pure noise component and map is the correla-
tion map. Finally, the correlation is:

corr(ñ(z), R̃PN) =
(ñ(z) − ¯̃n(z)).(R̃PN − R̃PN)

‖ñ(z) − ¯̃n(z)‖‖R̃PN − R̃PN‖
, (8)

where z is the slice number, the correlation was applied on
the unmasked pixels only.

3. EXPERIMENTAL RESULTS

We applied our experiments on 40 3D images of 3600 slices
from three different CT-Scanners, 12 3D images of 1200
slices from the Siemens 1, 12 3D images of 1200 slices from
the Siemens 2 and 16 3D images of 1200 slices from General
Electric. These images have similar acquisition parameters
(Beam energy: (120, 140) KV, Pitch value: (0.5, 1), Recon-
struction: (soft, hard)) and the other parameters are illustrated
in Table 1.

Siemens 1 Siemens 2 GE
Content phantom phantom phantom
Nb of images 12 12 16
Nb of slices 1200 1200 1200
Size (pixels) 512x512 512x512 512x512
Bits per pixel 16 16 16
Slice thickness 3mm 3mm 3mm
Pixel size 1mm 1mm 1mm
Nb of slices of RPN 200 200 200
Nb of tested slices 1000 1000 1000

Table 1. Characteristics of the experimental images.

200 slices were selected randomly from each device to build
the reference pattern noise as illustrated in Fig. 3, the corre-
lation map was built depending on the slices of the reference
pattern noise of each device. To build the correlation map,
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(a) RPN of S1 (b) RPN of S2 (c) RPN of GE

Fig. 3. The reference pattern noise of each device.

each pixel of the correlation map represents the frequency of
the same pixel in all the device slices being served as an edge
as illustrated in Fig. 4.

(a) Map of S1 (b) Map of S2 (c) Map of GE

Fig. 4. The correlation map of each device.

And the resulted reference pattern noise of each device ac-
cording to equation 6 is illustrated in Fig. 5.

(a) RPN of S 1 (b) RPN of S 2 (c) RPN of GE

Fig. 5. The three RPNs according to (6).

Generally, the General Electric images are centered in a
circle of diameter equal to the image hight or width, so we
build a circle mask with a size equal to that of General Elec-
tric, in order to keep a common element among all the refer-
ences. Then, we applied this mask on each reference pattern
noise and tested slice. Finally, we calculated the correlation,
between the noise component of the tested slices and the ref-
erence pattern noise of each device, the correlation is depen-
dent on the correlation map as illustrated in Fig.(6, 7, 8). In
each plot, the ’x’ axis represents the tested slice number and
the ’y’ axis represents the correlation value. We could notice
that the correlation values between the tested slices and the
reference pattern noise of the same device are the highest.
Table 2 illustrates the identification accuracy regarding each
device:

Siemens 1 Siemens 2 GE
Siemens 1 94,3 % 2,3 % 0 %
Siemens 2 2,6 % 95,2 % 0 %
GE 3,1 % 2,5 % 100 %

Table 2. Identification accuracy.

• 943 slices of Siemens 1 were classified correctly as ac-
quired from Siemens 1, while 57 slices were not.

• 952 slices of Siemens 2 were classified correctly as ac-
quired from Siemens 2, while 48 slices were not.

• 1000 slices of General Electric were classified correctly
as acquired from GE.

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed an improvement to the analysis of
the CT-Scanner identification problem. As a method of med-
ical image forensics, we were able to identify three different
CT-Scanners from their original images.

For future research, we plan to work directly on 3D im-
ages , to study the influence of different acquisition parame-
ters and we are going to study the influence of image com-
pressing on our proposed method.
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